STRUCTURAL HEALTH MONITORING USING STATISTICAL PATTERN RECOGNITION Nantes, France July 5-7, 2014

Time	Day 1 July 5	Time	Day 2 July 6
9:00-9:30	Instructor and Participant	8:30-9:30	7. Embedded Sensing: Piezoelectric
	Introductions		Active Sensing & Guided Waves (Todd)
			- Lamb wave theory
			- Signal processing for guided waves
			- Nonlinear acoustics/time reversal acoustics
9.30-10.30	1 Introduction (Farrar)	9:30-10:30	8 Telemetry (Todd)
0.00 10.00	- Motivation for SHM (NDE vs SHM)	0.00 10.00	- Embedded systems overview
	- Statistical pattern recognition paradigm		- Data Acquisition
	- Historical overview: aerospace		- Autonomous Intelligence
	/civil/mechanical application		- Wireless communications
	 Operational evaluation 		- System integration
10.20 10.45	Brook	10.20 10.45	- Localized computing
10:45 11:45	2 Data Acquisition L (Todd)	10.30-10.43	0 MEMS 8 Multi functional Materials for
10.45-11.45	- Sensor network components	10.45-11.45	9. WEWS & WUILI-IUNCTIONAL WATERIALS ION
	- Sensor performance metrics		- Basic micro-fabrication process
	- Signal conditioning issues		- Various applications
	- Sensor network paradigms		- MEMS accelerometers
	- Excitation		- Enabling nanotechnologies
			- Material characterization
			- Examples of self-sensing materials
11:45-12:45	3. Data Acquisition II (Farrar)	11:45-12:45	10. Basic Statistical Tools (Farrar)
	- Introduction to piezoelectric materials		- Statistical moments/distributions
	- Impedance method		- Density estimation
	- Sensor sen-diagnostics		- Central limit theorem
			- Principal component analysis
12:45-14:00	Lunch	12:45-14:00	Lunch
14:00-15:00	4. Software Exercises (Group	14:00-15:00	11. Software Exercises (Group
	Instruction)		Instruction)
	- Software development overview		- Optimal sensor placement
	- Functions & process assembly overview		- Fisher information matrix method
	- Introduction to SHM process building		- Maximum norm approach
	- Power spectral estimation		- Guide-wave active sensing
15.00-15.15	Break	15.00-15.15	Break
15.15-16.15	5. Embedded Sensing: Fiber	15.15-16.15	12. Damage Sensitive Features I (Farrar)
	Optics (Todd)		- Feature selection criteria
	- Basic fiber optic sensing concepts		- Feature vs metric
	(interferometry, multiplexing)		- Waveform/image comparisons
	 Common sensing methods 		- Basic statistics
	- Performance comparison		- Model parameters (inverse modeling)
1015 10:00	- Examples (I-10, patrol boat)	1015 10:00	
16:15-16:30	Dreak	16:15-16:30	Diedk 12 Domogo Sonoitivo Factures II (Tadal)
10:30-17:30	o. Empedded Sensing: Acoustic	10:30-17:30	Nonlinear response concente
	Sensing systems		- Waveform comparisons: Nonlinear detection
	-Data analysis		- Nonlinear time series modeling
	-Performance comparison and discussion		- Residual errors
	-Applications to aerospace structures		- Chaotic interrogation methods
			- Automated feature selection

Time	Day 3 July 7
8:30-9:30	14. Introduction to Statistical
	Inference (Farrar)
	- Supervised vs. unsupervised learning
	- Group Classification
	- Regression modeling
	- Outlier (novelty) detection
	- Hypothesis testing
9:30-10:30	15. Supervised Learning Methods
	(Worden)
	- Neural networks
	- Radial basis function
	- Support vector machines
	- Regression analysis
10:30-10:45	Break
10:45-11:45	16. Unsupervised Learning Methods
	(Worden)
	-Outlier analysis
	-Statistical process control
11.45 12.45	17 Data Normalization (Farrar)
11.45-12.45	-Environmental/operational effects on SHM
	-Parametric modeling environmental effects
	-Look-up table technique
	-Machine learning techniques
	-Experimental design
12:45-14:00	Lunch
14:00-15:00	18. Software Exercises (Group
	Instruction)
	- Intro to 3-storey data sets
	- Feature extraction w/ time series models
	- Modifying an SHM procedure
15:00-15:15	Break
15.15-16.30	19. SHM System Design I:
	Optimization (Todd)
	-Sensor optimization
	-Bayesian risk analysis
	-Detector design
	-System design framework
16:30-17:00	20. Closing Remarks and Survey
	(Farrar)
	- Recap the statistical pattern recognition
	paradigm
	- Fundamental axioms
	- Other sources of information
	- Course survey